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Abstract We consider a general pursuit-evasion differential game with three or more pursuers and
a single evader, all with simple motion (fixed-speed, infinite turn rate). It is shown that traditional
means of differential game analysis is difficult for this scenario. But simple motion and min-max time to
capture plus the two-person extension to Pontryagin’s maximum principle imply straight-line motion
at maximum speed which forms the basis of the solution using a geometric approach. Safe evader paths
and policies are defined which guarantee the evader can reach its destination without getting captured
by any of the pursuers, provided its destination satisfies some constraints. A linear program is used
to characterize the solution and subsequently the saddle-point is computed numerically. We replace
the numerical procedure with a more analytical geometric approach based on Voronoi diagrams after
observing a pattern in the numerical results. The solutions derived are open-loop optimal, meaning
the strategies are a saddle-point equilibrium in the open-loop sense.
Keywords pursuit-evasion · differential game · Voronoi diagram · optimization
Mathematics Subject Classification (2010) 49N70 · 49N90 · 49N75

1 Introduction

In adversarial settings for autonomous vehicles, robots, and systems, pursuit-evasion formulations
are an interesting research direction. These formulations started with the seminal contributions by
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Isaacs [18, 19]. Not long after, Breakwell and Hagedorn [4] investigated a dynamic game seeking the
minimum time successive capture of two slower evaders by a faster pursuer. Using [4] as a motivation,
the extension to capture multiple evaders by a fast pursuer was addressed [20].

References [15] and [17] looked at the case of multiple pursuers seeking to capture an evader. The
concept of a dynamic Voronoi diagram was used to define the closed domain in which evader capture
occurred by these several pursuers. Reference [9] finds the intercept set of evaders, assuming that the
evaders’ goals were known to the pursuers. A related work, where the objective is to rescue certain
agents with interference of obstacles was modeled in the Prey, Protector, and Predator game [22]. In
this paper, we continue this investigation of capture of a single evader in minimum time by multiple
pursuers.

The central contribution of this work is to provide open-loop optimal pursuit and evasion strategies
to the M-pursuer one-evader differential game. These strategies, while useful, are not necessarily the
solution to the M-pursuer one-evader differential game in the sense of the feedback saddle-point
(see [3]). Traditional differential game analysis a la Isaacs’ method [19] is difficult, as is shown. In
order to proceed, we employ the two-person extension to Pontryagin’s maximum principle to establish
the necessary conditions for optimality pertaining to the pursuers’ strategy.

The pursuers’ objective is to intercept the evader in minimum time by cooperating as a team.
The agents are assumed to have full access to the state of the system, namely, the positions of each
agent. We show that, for general initial positions of the agents, cooperation among the pursuers can
significantly reduce the capture time of the evader compared to operating in isolation. The state of the
system is of high dimension due to the number of agents – some work has been done on decomposition
methods to ameliorate this issue [10–12]. However, our approach does not rely on decomposition and
therefore considers full cooperation among pursuers. This work extends the solution to the one-on-one
and two-on-one games by allowing the evader to stand still when it is advantageous. In these cases, the
evader would only worsen its capture time by moving from this point. Due to the proposed pursuer
strategy which consists of straight-line paths, the solution lends itself to a geometric interpretation
with many interesting properties. Several algorithms are presented for the efficient computation of
the evader’s region of dominance as well as the optimal capture point under the proposed strategies.

Although the solution presented in this paper is open-loop optimal, the analysis is a useful step
in fully solving and verifying the M-pursuer one-evader differential game. The solution of the latter
opens up the possibility of analyzing the seemingly intractable (and ambitious) M-pursuer N-evader
differential game by breaking the game down into instances of M-pursuer one-evader games and
considering combinations of pursuer assignments. The advantage, then, is the removal of the burden
of a very high dimensional state space in the differential game analysis.

This paper is a significant enhancement over [25]. Among the enhancements are the introduction
of a relative coordinate system, a derivation of the necessary conditions for optimality, proofs of
safety for a class of evader behaviors, an alternative linear program formulation, illustrative examples,
and additional figures for clarity. Finally, we make it clear that the policies proposed herein are not
necessarily the feedback saddle-point equilibrium policies.

The remainder of the paper is organized as follows. Section 2 contains the problem formulation.
Section 3 elaborates on the formulation and introduces some solution methods. Section 3.3 presents
a new geometric approach, Section 4 defines several efficient algorithms, and Section 5 contains sim-
ulation results. Section 6 concludes with some remarks about areas for further research.

2 Problem Formulation

We consider a pursuit-evasion scenario with a single evader, E, and multiple pursuers, Pi, for i =
1, . . . ,M . We are interested in the case where M ≥ 3 as the single- and two-pursuer scenarios have
been addressed in [16, 19]. The objective of the pursuers is to capture the evader in minimum time,
whereas the evader tries to delay capture as long as possible. We consider the case where the pursuers
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are faster than the evader. In the case of equal speeds (or a fast evader) one must first determine
where in the state space capture is even possible (i.e., solve the game of kind) before solving the
capture time problem (the game of degree). Accompanying the speed advantage, the pursuers have
an advantage in numbers. There is a marked reduction in capture time in the two-pursuer scenario
compared to having just one pursuer [16]. The intent of this work is to show even greater improvement
when M > 2.

The state of the system is determined solely by the positions of each of the agents on the Euclidean
plane in two dimensions

E = (xE , yE),

Pi = (xPi
, yPi

), ∀i ∈ {1, . . . ,M},

so the state space’s dimension is 2(M + 1). All the agents have simple motion, meaning their control
input at every time instant is their heading angle. For the evader, we include speed as a control input
bounded by VEmax

; the pursuers all share a constant velocity, VP > VEmax
. Thus the kinematics of

the system can be written as

ẋE = uE ,

ẏE = vE ,

ẋPi
= ui i = 1, . . . ,M,

ẏPi
= vi i = 1, . . . ,M,

s.t. u2
E + v2E ≤ VEmax

,

u2
i + v2i = VP i = 1, . . . ,M,

(1)

where uE and vE are the evader’s velocity components in the x and y direction, and, similarly, ui and
vi for the ith pursuer.

Remark 1 Although it appears that the pursuers have two control variables they only have one since
the choice of either ui or vi completely determines the other by the final constraint in (1).

In the realistic plane, there are 2M+2 states, 2 for each agent. However, it is possible to reduce the
number of states to 2M by considering a relative coordinate system. In this relative coordinate system,
the evader’s position is always (0, 0) and thus the 2M states correspond to the x and y coordinate of
each pursuer relative to the evader. The transformation is given by

xi = xPi
− xE i = 1, . . . ,M,

yi = yPi
− yE i = 1, . . . ,M,

(2)

where (xi, yi) are the coordinates of the ith pursuer relative to the evader. Substituting (1) into (2)
yields the following expressions for the kinematics in the reduced state space

ẋi = ui − uE i = 1, . . . ,M,

ẏi = vi − vE i = 1, . . . ,M,

s.t. u2
E + v2E ≤ VEmax

,

u2
i + v2i = VP i = 1, . . . ,M.

(3)

Figure 1 shows the two coordinate systems and how they are related.
The agents have at their disposal the current state of the system (i.e., full information) but not

the current control action of the other agents. One may be tempted to consider a scenario wherein
the agents also have access to the history of the system’s evolution (including past control actions
of all the agents). In this alternate formulation, agents may form some belief about their opponent’s
next action that is conditioned on the state history and previous control actions. Isaacs discusses this
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Fig. 1 Coordinate systems

possibility and reasons that, because the agents’ control input can change abruptly without notice,
it is impossible to rely on any prediction of the opponent’s future position [19]. If an agent truly did
adhere to some behavior beyond what is specified in the kinematics, then perhaps its opponent could
improve its performance if it could correctly ascertain the behavior. What is gained in performance
is lost in robustness, as is generally the case in the real world.

Let the state of the system be represented by x ≜ ((x1, y1), . . . , (xM , yM )). Similarly, let uE ≜
(uE , vE) and uP ≜ (u1, v1, . . . , uM , vM ) represent the control inputs of the evader and pursuers,
respectively. Note that each part of the state is a function of time, though we will not notate it
explicitly. The set of terminal states for the scenario is defined by the requirement of point capture:

Λ = {x | ∃i, 1 ≤ i ≤ M s.t. (xi, yi) = (0, 0)} . (4)

Remark 2 Eq. (4) allows one or more pursuers to reach the position (0, 0) at time T .

Another way of denoting the set of the terminal conditions is by defining

Ψ(x) =
M∏
i=1

(x2i + y2i ), (5)

and setting
Λ = {x | Ψ(x) = 0} . (6)

The condition Ψ(x) = 0 is akin to a terminal manifold of dimension 2M − 1.
The terminal time T , or capture time, is the first time such that the system state enters Λ,

T = inf{t | x(t) ∈ Λ}. (7)

Let the set of interceptors be those pursuers whose positions are (0, 0) at time T , i.e.,

I = {i | (xi(T ), yi(T )) = (0, 0)}. (8)

The terminal time T is also the cost (or payoff) of the game:

J(uE(x),uP (x)) =

∫ T

0

dτ, (9)
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with uE ,uP subject to (3). The value function describes the minimax value of the cost function
starting from the point x0 = x(0) at time t = 0 [3]

V (x0) = min
uP

max
uE

∫ T

0

dτ. (10)

For such a function to exist the min and max must be interchangeable. The existence of this function
or even of a saddle-point in the cost function is not guaranteed, however we will proceed under the
assumption that at least the saddle-point exists. That is, we seek the control inputs that satisfy

J(uE ,u∗
P ) ≤ J(u∗

E ,u∗
P ) ≤ J(u∗

E ,uP ). (11)

The control policies in (9) are state feedback policies, and thus J(u∗
E ,u∗

P ) represents a feedback
saddle-point equilibrium. The Isaacs Equation [19] can be written as

min
uP

max
uE

M∑
i=1

Vxi(ui − uE) + Vyi(vi − vE) + 1 = 0, (12)

where

Vxi =
∂V

∂xi
,

Vyi =
∂V

∂yi
.

For many problems in [19], the Isaacs Equation (12), along with information about the terminal
surface, is sufficient to generate game-optimal trajectories. Indeed, this is also the approach taken
in [14]. If we attempt this here, the curse of dimensionality bites us and an impasse is reached.

To circumvent the need to deal directly with the value function itself, we turn our attention to
an analysis based upon open-loop strategies. As in many of the examples in [3] we drop the explicit
dependence of the control policies on the state

uP (t,x) = ûP (t), uE(t,x) = ûE(t). (13)

Here, ûP (t) and ûE(t) represent open-loop controls for the pursuers and evader, respectively.

2.1 Necessary Conditions for Optimality

Under the assumptions that the pair (u∗
P ,u∗

E) provides a saddle-point solution in feedback strategies
and the corresponding open-loop representation (û∗

P , û∗
E) provides a saddle-point solution in open-

loop policies then Theorem 2 of [3] provides a framework for deriving the necessary conditions for
optimality. The procedure is based upon the two-person extension to Pontryagin’s maximum principle.
First let the Hamiltonian be given by

H(t, λ(t), ûP , ûE) = 1 + λ⊤



u1 − uE
v1 − vE
u2 − uE
v2 − vE

...
uM − uE
vM − vE


, (14)
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where λ is the costate vector in R2M

λ = (λx1 , λy1 , . . . , λxM , λyM ).

Thus the Hamiltonian becomes

H = 1+
M∑
i=1

λxi(ui − uE) + λyi(vi − vE), (15)

where the elements ui and vi, i = 1, . . . ,M , and uE and vE are taken to mean the corresponding
elements in the open-loop policies ûP and ûE , respectively. The costate variables satisfy

λ̇xi = −∂H

∂xi
= 0, λ̇yi = −∂H

∂yi
= 0, for i = 1, . . . ,M. (16)

Eq. (14) does not depend explicitly on the state x. This is a result of the fact that the kinematics
are only a function of the control inputs. Thus, we have λ̇ = 0 which implies the costate variables are
constant w.r.t. time (e.g., λx1(t) = λx1 = const). The minimizing controls for the pursuers can easily
be obtained from (3) and (15) as

u∗i = − λxiVP√
λ2
xi + λ2

yi

, v∗i = − λyiVP√
λ2
xi + λ2

yi

, (17)

which are also constant. Because the optimal control policy for the pursuers is constant, their state
trajectories are straight lines in the global coordinate system. The only caveat is that the optimal
control policy is defined only if λxi ̸= 0 or λyi ̸= 0. When λxi = λyi = 0 the implication is that the
value of the game is not sensitive to pursuer i. When the ith pursuer participates in the capture of
the evader (i.e., xi(T ) = yi(T ) = 0), either one of λxi or λyi must be nonzero.

3 Solution

We now return to the original coordinate system, and without loss of generality consider the starting
position of the evader to be the origin and the evader’s speed to be unity. Let the ratio of evader’s
max speed to pursuers’ speed be given by α = VEmax

/VP < 1. The necessary conditions for optimality
derived above help to justify the following:

Proposition 1 The optimal trajectories of the agents are straight line paths.

Moreover, under optimal play, the pursuers’ heading should not change; that is, their trajectory is
comprised of a single straight line segment. Thus, we repose the differential game problem of min-max
capture time as finding the coordinates I = (xI , yI) that maximize the evader’s life assuming all the
pursuers head directly to that point starting at t = 0. Then the terminal time (which is also the
cost/payoff of the game in the preceding section) can be written simply as

T̄ (x, I) = min
i

α

√
(xPi

− xI)2 + (yPi
− yI)2, (18)

which is the smallest time for any of the pursuers to reach the designated intercept point. There is a
subtle shift here from the traditional game-theoretic framework wherein the agents have absolutely
no knowledge of the opponents’ present or future control action. Here, the understanding is that the
point I represents a designated intercept point that both the evader and pursuers have knowledge of.
Thus (18) is the capture time assuming that all the agents head directly to the designated (or ’agreed
upon’) point. Suppose the evader were to choose the point I, then (assuming I could be reached safely
by the evader) (18) gives the worst-case capture time from the perspective of the evader. Conversely,



The Multi-Pursuer Single-Evader Game 7

C

P E
×
O

R

+

Fig. 2 Apollonius circle for a single pursuer.

if the pursuers were to select point I, it is in the evader’s best interest to flee from this point rather
than aim towards it. Therefore, we treat the point I as if it is the choice of the evader:

T (x) = max
(xI ,yI)

T̄ (x, I)

= max
(xI ,yI)

min
i

α

√
(xPi

− xI)2 + (yPi
− yI)2,

(19)

wherein the evader is selecting the best choice among all the worst-case capture times, T̄ . Eq. (19) is
analogous to the value of the game in (10), but not necessarily equivalent. As hinted previously, the
order of max-min in (19) is not interchangeable. In fact, interchangeability of max and min is required
to obtain a saddle point solution to a differential game (known as Isaacs Condition) [19].

3.1 Constraints

Eq. (19) is not particularly useful because the evader could designate an intercept point at infinity
and thus the capture time would also be infinite. In other words, (19) is unconstrained. We should
amend this by stating (1) the evader must be able to reach point I in T time and (2) the evader must
be able to reach point I safely, that is, capture of the evader en route to I ought not be possible.
Constraint (1) is easily formulated as [25]

x2I + y2I ≤ T 2, (20)

since the evader’s speed and starting position are one and (0, 0), respectively. The need for (2) is due
to the fact that if capture is possible prior to the evader reaching I, then the associated terminal time
T is meaningless in the sense that it is no longer analogous to a game-theoretic solution. To formalize
(2), the concept of the Apollonius circle is useful. In the context of pursuit and evasion, the Apollonius
circle is the locus of points such that the ratio of distances to the evader and pursuer is equal to their
speed ratio [19]. Thus, the Apollonius circle defines the points that can be reached simultaneously by
the pursuer and evader assuming they each head directly to the point at their maximum speeds. Inside
the circle (i.e., the Apollonius disk) are points in which the evader can reach before the pursuer under
the same assumptions. When the speed ratio is unity, the Apollonius circle becomes the orthogonal
bisector of the segment EP . Figure 2 displays the Apollonius circle. Note, the optimal capture point
for this configuration is marked with a +. The center of the Apollonius circle, O, marked with a green
×, lies on the line passing through the evader and pursuer. The definition given above stipulates that,
for any point C on the circle, the ratio of EC/PC = α. This relation allows one to express the location
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of the circle’s center as well as its radius

EO =
α2

1− α2
PE, (21)

R =
α

1− α2
PE. (22)

Putting the circle center associated with pursuer i into the global coordinate system gives

xOi
= − α2

1− α2
xPi

, (23)

yOi
= − α2

1− α2
yPi

, (24)

Ri =
α

1− α2

√
x2Pi

+ y2Pi
. (25)

The set describing the Apollonius disk associated with pursuer i is

Di =
{
(x, y)

∣∣ (x− xOi
)2 + (y − yOi

)2 ≤ R2
i

}
. (26)

For a point to be safely reachable by the evader, that is, no pursuer can reach the point or any point
along the evader’s path before the evader, the point and the evader’s path to the point must lie inside
the Apollonius disk associated with each pursuer

I ∈ ∩M
i=1Di,

(xI − xOi
)2 + (yI − yOi

)2 ≤ Ri, i = 1, . . . ,M.
(27)

Let the intersection of Apollonius disks be represented by S = ∩M
i=1Di; we refer to S as the evader’s

safety region. Eq. (27) is only a necessary condition, however, it does not guarantee safety. First of
all, it only stipulates that the point I is inside every Apollonius disk. It is possible for the evader to
take a path which may leave the set S, in which case there exists a valid pursuer path which leads
to capture at the boundary, ∂S. Moreover, one must recompute S at each instant of time as the
game is played; thus under optimal play, S shrinks over time as the pursuers approach the evader. To
guarantee safety, then, the point I must lie inside the instantaneous region S(t) for all t ≤ T ; at T

the region S collapses to a point.

Property 1 A safe evader path is one in which, given the initial positions of all the agents, x0, and
their velocities, VE and VP , there does not exist a pursuer path that captures the evader en route to
its destination.

Lemma 1 S is a convex set.

Proof S is the intersection of Apollonius disks, and each Apollonius disk is a convex set, thus for any
two points p1, p2 ∈ S,

p1, p2 ∈ Di, i = 1, . . . ,M,

from the definition of set intersection and,

µp1 + (1− µ)p2 ∈ Di, i = 1, . . . ,M, 0 ≤ t ≤ 1,

by convexity of the Di. Therefore, by set intersection, all of these points are also in S, implying
convexity [7]. ⊓⊔

Corollary 1 Any straight-line path starting inside and ending inside S lies entirely in S.



The Multi-Pursuer Single-Evader Game 9

Theorem 1 Given an evader and pursuers at Pi, i = 1, . . . ,M and point I ∈ S, if the evader travels
directly towards I at maximum speed then the evader will reach I safely. There does not exist a pursuer
path that can intercept the evader before T̄ according to (18).

Proof By construction, the evader’s initial position of (0, 0) lies inside S. Every point along the
straight-line path from (0, 0) to I is inside S from Corollary 1. The evader can reach I under the
prescribed evader policy at or before the time that any pursuer can reach it by construction of the
Apollonius disks Di and the fact that I ∈ S. This implies that the point I lies inside S(t) for t ≤ t1
where

t1 =
√

x2I + y2I ≤ T,

is the time at which the evader reaches I. The last inequality is enforced by (20). For t1 ≤ t ≤ T the
evader’s position E = I, thus I ∈ S for t1 ≤ t ≤ T which completes the proof. ⊓⊔

Theorem 1 specifies an evader policy which is guaranteed to be safe in the sense that (18) gives a
worst-case capture time. However, this policy is not unique and there may be many alternative policies
which are also safe [24,25].

Proposition 2 Given an evader at E and pursuers at Pi, i = 1, . . . ,M and point I ∈ S, if the evader
travels directly towards I at speed s then the evader will reach I safely, where

s ≜ 1

T̄

√
x2I + y2I . (28)

That is, there does not exist a pursuer path that can intercept the evader before T̄ according to (18).

Another policy, which is analogous to the policy in Theorem 1 is for the evader to head to I at
maximum speed and then switch heading between 0 and π infinitely often while remaining at maximum
speed [25]. In fact, allowing the evader to modulate its heading continuously alleviates entirely the
need to consider its speed as a control variable. Oddly enough, a straight-line path is not strictly
necessary to guarantee the evader can reach I safely (nor is it sufficient). An example scenario is
included in Section 5 wherein the evader takes a safe, non-straight-line path to I corresponding to
the argmax in (19). For the remainder, we restrict the evader to employ the policy prescribed in
Theorem 1 since it is safe and also consistent with Proposition 1.

3.2 Linear Program with Quadratic Constraints

The multiple pursuer single evader game has been re-posed as solving (19) subject to the con-
straints (20) and (27) with the understanding that all the agents head directly to I corresponding to
the argmax of (19). In order to solve this new problem, we formulate it as a linear program:

max
z

c⊤
[
z

s

]
, (29)

with slack variables s =
[
s1 s2 . . . sM

]⊤ subject to the constraints

gi(z) = 0, i = 1, . . . ,M, (30)
−gE(z) ≤ 0, (31)

−si ≤ 0, i = 1, . . . ,M, (32)

where c⊤ =
[
1 0 . . . 0

]
1×(M+3)

, z⊤ =
[
m x y

]
. The functions g are defined as

gi(z) =
m

α2
− (x− xPi

)2 − (y − yPi
)2 + si, i = 1, . . . ,M, (33)
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Fig. 3 Numerical results for Example 1

and
gE(z) = m− x2 − y2. (34)

Note that the problem is about the maximization of a linear function with quadratic constraints.
Furthermore, the constraints (30) are active whether or not the point (x, y) is on ∂S or S∩∂S (i.e., on
the boundary or interior of S). The set of pursuers which intercept the evader at (x, y) is given as,

I = {i | si = 0, i = 1, . . . ,M} (35)

hence, si represents the remaining time required for pursuer i to reach (x, y) after the evader and
interceptors have reached it. Thus, (33) with (32) is analogous to the Apollonius circle constraint
introduced in (27). In other words, si > 0 holds for any point inside pursuer i’s Apollonius circle.
Similarly, (34) and (31) correspond to the reachability constraint (20). This constraint is always
satisfied, however, by the definition of the Apollonius circle and the fact that (30) and (32) constrain
the point to be inside S.

This linear program is now amenable to solution using a generic numerical optimization scheme.
Consider the following example, whose numerical results are shown in Figure 3.

Example 1

M = 4

P1 = (cos(−π/6), sin(−π/6))

P2 = (cos(7π/6), sin(7π/6))

P3 = (0, 1)

P4 = (0,−0.5)

VP = 1.5

In Figure 3 and those to follow the pursuers are indicated with triangles and colored according to
whether or not they are in the set I (red if so, yellow if not). The initial position of the evader is
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marked by a blue circle and the capture point is marked with + and E. The Apollonius circles for those
pursuers in I are shown as translucent green and for those not in I just the border is marked with
yellow. Finally, the circle centers are marked with ×. As previously mentioned, the set I is computed
from (35). When si = 0, the constraints gE and gi define the Apollonius circle associated with pursuer
i. Thus adding the Apollonius circle constraints, (27), will not change the optimization problem. In
fact, once we introduce the Apollonius circle constraints, we can remove the slack variables from our
problem formulation and use gi(z) ≤ 0.

For the scenario in Example 1 there is a local maxima (shown in Figure 3a) and two global maxima
which have equal value. One of the global maxima is shown in Figure 3b, and the other is symmetric
about the y axis. The matter of local maxima and the possibility for multiple global maxima presents
a practical issue. In general, it is not known how many maxima or local maxima may be present
in (29). One may need to initialize the numerical optimization procedure many times to uncover all
the different maxima, and even then an upper bound on this number is not known at this time. The
two initial conditions used for Example 1 are z =

[
0.1, 0.1, 1

]⊤ and
[
0, 0.1, 1

]⊤, but these may not be
sufficient to find the true global maximum. In summary, the numerical optimization process is blind
to any special structure of the problem and sensitive to the presence of local maxima.

3.3 Geometric Approach

The linear program introduced in the previous section must search over a continuous space; it was
mentioned that the linear program does not make use of any special structure to search the space intel-
ligently. Consider the following as a motivating example for finding some additional useful information
embedded in the problem:

Example 2

M = 4

P1 = (cos(−π/6), sin(−π/6))

P2 = (cos(7π/6), sin(7π/6))

P3 = (0, 1)

VP = 1.5

Note, this example is the same as Example 1 but with P4 removed.

Now, we repeat the numerical optimization of the linear program as before, but with initial z =[
0, 0, 1

]⊤ and
[
0.502, 0.29, 1

]⊤. Figure 4 shows the results of the numerical optimization. Like Ex-
ample 1 there are a number of local maxima and global maxima. In this case, there are three local
maxima, one of which is shown in Figure 4a. The other two local maxima are radially symmetric w.r.t
the origin. Now, the global maximum is unique and lies in S ∩∂S, that is, in the interior of the region
S whereas before the global maximum was near (essentially on) the border ∂S. The former case is
easy to understand – it corresponds to the furthest distance from the evader to a point on ∂S. In the
latter case it becomes optimal for the evader to not move at all.

Remark 3 Simultaneous capture by two pursuers, an example of which is shown in Figure 4a, occurs
at the intersection of Apollonius circles associated with the intercepting pursuers.

Figure 4b, on the other hand, depicts simultaneous capture by three pursuers.
When Isaacs first posed the two cutters and fugitive ship problem [19] he posited that the optimal

strategy would be for all the agents to head to the further of the two Apollonius circle intersection
points. Indeed, this was proven to be true in certain regions of the state space [16]. Of course, the game
may also degenerate to capture by a single pursuer, which also holds true for the multiple pursuer
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(b) Max, (x, y) = (0, 0) and T = 0.667.

Fig. 4 Numerical results for Example 2 highlighting some special properties of the solution.

case as we shall explore later on. The geometry and solution of the two pursuer game is driven by
the fact that optimality dictates straight-line paths. From Proposition 1 and its preceding analysis,
we place ourselves in this same realm of geometric analysis in which the Apollonius circles are of
chief importance. However, from Figure 4b it is plain that the optimal intercept point (0, 0) has little
to do with the Apollonius circles themselves. Up to now we have only considered dividing the state
space according to regions dominated by the evader versus a particular pursuer. Now consider the
region dominated by a particular pursuer versus all the other pursuers; that is, the region of the state
space where pursuer i can reach before any other pursuer j ̸= i. This partitioning of the state space
(which, at the moment, leaves out any consideration of the evader) is precisely a Voronoi diagram [8].
Because the pursuers share the same velocity, the diagram is comprised of straight line segments which
partitions the entire xy plane. Figure 5 shows the same setup but with the pursuer Voronoi diagram
overlaid.

Remark 4 The Apollonius circle intersections lie on the edges of the pursuer Voronoi diagram. Thus,
for simultaneous capture by two pursuers to be optimal it must occur on an edge of the pursuer
Voronoi diagram.

Remark 5 The optimal capture point for Example 4b which represents simultaneous capture by three
pursuers coincides with the vertex of the pursuer Voronoi diagram.

This last observation, in particular, drives the remainder of the analysis and allows us to generalize
the multiple pursuer single evader game to any number of pursuers. Also, note that the application of
Voronoi diagrams to the analysis of pursuit-evasion games is not novel and has been explored exten-
sively in the literature (c.f. [2, 6, 17, 21, 23]). The Voronoi diagram, in 2D space, defines a tessellation
in which each agent resides in their own cell defining points in space they can reach before any other
agent. This construct is particularly useful in the present context as we have established that the op-
timal trajectories ought to be comprised of constant-heading paths. We define two different Voronoi
diagrams, each parameterized as a set of vertices, a set of edges, and a set of agent positions (which
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Fig. 5 Example 2 with the pursuer Voronoi diagram overlaid. The vertex is colored blue and the cell borders are
shown as dashed lines.

correspond to so-called generator points) [25],

VE = (VE , EE , {E,P1, . . . , PM}) ,
VP = (VP , EP , {P1, . . . , PM}) .

Note, the only difference between the two is that VE includes the evader as a generator point, and
VP use only the pursuer positions as generator points. The latter describes a partitioning wherein the
pursuers can reach points in their own cell before any other pursuer. Because the pursuers share the
same velocity the edges EP are segments of the perpendicular bisectors between neighboring pursuers.
The same is not true, however, for the edges of the evader’s cell in VE , since E is slower than the
neighboring pursuers. Typically, when different weights (velocities) are involved one may consider VE

to be a multiplicatively-weighted Voronoi diagram [8]. Here, we note that the evader’s cell in VE is
exactly the safety region, S, which we have already defined using the Apollonius circles. Now let S be
parameterized as

S = (VS , ES), (36)

where VS is an ordered set of vertices of S, and ES is an ordered set of arcs [25]. The ordering of these
two sets is such that the ith edge in ES connects the i− 1th and ith Apollonius circle intersection in
VS .

3.4 Types of Solutions

In the introduction we noted that for the case of M > 2 there is a new type of solution over the
previously derived solutions to the one-on-one and two-on-one scenarios. First, let us briefly recount
these known solutions as they are still solutions to the M -on-one scenario for particular configurations.
As example, consider a case with M > 2 wherein one pursuer is very close to the evader and the other
M −1 pursuers are very (let us say “infinitely”) far away. Then the solution, obviously, degenerates to
the solution of the one-on-one scenario between the close pursuer and the evader. The solution, in this
case, is given by pure pursuit: the evader’s and pursuer’s heading should be along the line-of-sight [19].
Capture occurs on the point on the Apollonius circle which is antipodal to the pursuer.
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Hugo Steinhaus and Rufus Isaacs each proposed the case of two pursuers against one evader.
Isaacs referred to this scenario as the “two cutters and fugitive ship problem” [19]. In his book, Isaacs
posited that the solution of the game was for all three agents to head to the intersection of Apollonius
circles furthest from the evader. Note, however, that Isaacs did not mention the cases in which the
two-on-one scenario degenerates to one-on-one. Nonetheless, using the geometric intuition of Isaacs,
the Value function and saddle-point strategies were derived only recently in [16].

As will be shown in the following sections, it is not necessary for some pursuers to be ”infinitely far”
away from the evader for the scenario to degenerate to two-on-one or one-on-one. Instead, we retain
the solutions to all of these sub-scenarios as candidate solutions. Note that each of the candidates
described above necessarily occur on the boundary of the evader’s dominance region ∂S. When M ≥ 3
we must consider new candidate solution, one in which capture occurs in the interior of S, as opposed
on the boundary ∂S. We claim that when the solution to (19) occurs in the interior of S, the point
necessarily corresponds to a vertex of VP , the Voronoi diagram for the pursuers [25]

(x∗, y∗) /∈ ∂S =⇒ (x∗, y∗) ∈ VP , (37)

and thus implies simultaneous capture by three or more pursuers. Now, with all possible candidate
solutions described, we include one of the main results in [25] which states that the solution of (19) is
among this finite set of candidates comprised of points representing capture by a single pursuer (P1

S),
capture by two pursuers simultaneously (VS), and capture by three or more pursuers simultaneously
(VPS ).

Theorem 2
(x∗, y∗) ∈ P1

S ∪ VS ∪ VPS , (38)

where
(x∗, y∗) = arg max

(x,y)∈S
min

i∈{1,...,M}
∥(x, y)− Pi∥αP ,

P1
S =

{
xi, yi

∣∣∣∣xi, yi = Ri(1 + αP )
E − Pi

∥E − Pi∥
,

xi, yi ∈ S, i = 1, . . . ,M

}
,

VPS = VP ∩ S.

(39)

Proof The interested reader is referred to [25]. ⊓⊔

3.5 Categories of Pursuers

One of the interesting consequences of Theorem 2 is the fact that not all the pursuers have an effect
on the playout of the game. For example, a pursuer that is very far away from the evader compared
to the other pursuers may not be able to reach the evader before capture occurs. This is certainly
the case when the Apollonius circle of a pursuer completely contains the evader’s safety region, S. As
mentioned in [25] the set of pursuers can be broken up into four disjoint sets. The membership of the
pursuers is a function of the optimal capture point I (i.e., the solution to the first equation in (39)).
The first set contains those pursuers who reach I at T̄ , according to (18). Earlier, we referred to this
set as “interceptors” using the notation I. The set of pursuers whose Apollonius circle completely
contains the safety region S is given by

I− = {i | ∂S ∩ ∂Di = ∅, i = 1, . . . ,M} . (40)
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Fig. 6 Categories of pursuers. The color of each pursuer with its Apollonius circle denote which category it
belongs to. The boundary of the evader’s safety region is rendered in dashed magenta.

If capture is constrained to occur in S, then these pursuers have no effect on the game. They can be
discarded completely; we refer to this set as “fully redundant”. Then the set of pursuers who share an
edge of the evader’s cell of VE is given by

IS = {1, . . . ,M} \ I−. (41)

The set IS \ I contains pursuers which neighbor the evader in VE and can be further broken down
by recomputing the solution (i.e., optimal intercept point I and capture time T ) and checking if the
new solution changed. Let the new solution of the game with the ith pursuer removed be denoted as
I\i and T \i for the intercept point and capture time, respectively. If T \i = T and I\i = I, removal
of pursuer i had no effect on the game and thus it is “redundant”; we denote these pursuers as IR.
Alternatively, we have T \i > T or I\i ̸= I, and thus removal of pursuer i led to a decrease in the
pursuers’ performance or a change in the optimal intercept point, respectively. These pursuers are
referred to as “escorts”, denoted IE . It is necessary for the escorts to “play the game” by heading
towards I; alternatively they could simply implement pure pursuit. Their purpose is to control the
dynamic shape of S so that no new Apollonius circle intersection becomes feasible or advantageous
for the evader. Because they do not actually participate in capture, it is difficult to say precisely what
is optimal for these pursuers [25]. One interesting research question is what an escort could or should
do when it is an escort for more than one evader in an M on N pursuit-evasion scenario.

Figure 6 contains an example wherein all the categories are represented. In this example, simul-
taneous capture is achieved by P1, P3, and P8. If P4 were removed from the game, the evader could
flee to the Apollonius intersection directly to its left and reach it safely, thus increasing capture time.
Therefore, P4 must play the game by shaping S. P6 neighbors E in VE which is homologous to stating
that part of the boundary of its Apollonius circle coincides with the boundary of S. Removal of P6
from the game would make other Apollonius circle intersections safe/feasible for the evader, however
these points are suboptimal. Thus, P6 does not have any effect on the solution provided P1, P3, P4,
and P8 behave optimally.

Fortunately, the set I− can be determined prior to solving (39). In Figure 6, the safety region
S lies entirely inside the interior of the fully redundant pursuers’ Apollonius circles. Thus, in this
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case M = 10, five may be discarded immediately. The following section presents an algorithm for
computing the set IS , which are the pursuers who are neighbors of the evader in VE . This reduced set
includes all the pursuers who could possibly affect the solution. Interestingly, in this example, using
the linear program method yields a different capture point wherein P3, P4, and P8 are interceptors
and the capture time is 0.4% worse for the evader.

4 Geometric Algorithms

For general initial conditions, the size of the set of pursuers who are neighbors of E in VE , namely
|IS |, is usually close to four. This could be true even when M is very large (say, in the thousands).
However, |IS | may be large when the positions of the pursuers are highly correlated. The extreme
case would be when the pursuers lie on a ring (i.e., are equidistant) from the evader. In that case,
|IS | = M and all the Apollonius circle will contribute edges to S. For the algorithm to follow, this
will yield worst-case performance. In this section, we briefly describe and summarize two algorithms:
an algorithm which simultaneously computes IS and S, and another which computes the optimal
intercept point (according to (39)) given S. The paper [25] contains a complete specification of these
algorithms including some supporting lemmas and analysis of the computational complexity.

First note that S corresponds to the evader’s cell of VE , which is the multiplicatively-weighted
Voronoi diagram consisting of all the agents [25]. Part of the motivation for computing S quickly is the
fact that existing approaches (like computing the entire multiplicatively-weighted Voronoi diagram)
can be O(M2) [1]. Note also that to construct S, we are essentially computing the union of M disks,
for which there is an algorithm which takes Θ(M logM) time [5]. The algorithm described here differs
in that we do not use any geometric transformations. We refer to the algorithm which computes S
and IS as EvaderCell. The EvaderCell algorithm takes as input the positions of all the agents
and the speed ratio α. First, the Apollonius circles for each pursuer are computed. Then the pursuers
are ranked according to the minimum distance from the evader to a point on their Apollonius circle.
This measure is useful because it takes into account both the distance from the pursuer to the evader
as well as its speed. The latter piece makes this algorithm applicable in the case where the pursuers
have different velocities. However, for the present case of equal-speed pursuers, we could simply rank
pursuers according to distance from the evader. Note, for computational speed this ranking is achieved
using a heap, in lieu of a full sort, since, in the general case, not all the pursuers require consideration.
EvaderCell constructs S iteratively, considering a single Apollonius circle in each iteration. Initially,
the region S is initialized as the Apollonius circle of the closest pursuer. Then, as pursuers (and their
Apollonius circles) are dequeued from the heap EvaderCell computes the intersection of the new
Apollonius circle with the current region S. Eventually, the closest point on a pursuer’s Apollonius
circle will be further from the evader than the furthest point on S, then we know that this pursuer,
and all subsequent pursuers in the heap, fall into the fully redundant category [25]. Therefore, the
construction of S is complete and IS is simply the set of pursuers that had been dequeued previously.
Thus, EvaderCell returns the ordered sets of vertices and arc segments (VS , ES) and IS .

Now, we summarize several of the lemmas from [25] which affirm the correctness of EvaderCell.

1. The pursuer closest to E is in IS and has an Apollonius circle which comes the closest to E.
2. The closest distance of the pursuers’ Apollonius circles is monotonically non-decreasing with each

iteration (due to the queue/heap property).
3. The point on ∂S furthest from the evader is either at the intersection of two Apollonius circles or

corresponds to the solution to one of the one-on-one games.
4. The distance from the evader to the point on ∂S furthest away is monotonically non-increasing

with each iteration.
5. None of the remaining pursuers’ Apollonius circles intersect S once we reach a pursuer whose

Apollonius circle’s minimum distance to the evader is greater than the furthest point from the
evader on ∂S.
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6. There can be at most one one-on-one optimal intercept point on ∂S.
7. If a one-on-one optimal intercept point lies on ∂S, it is the optimal intercept point for the overall

game.
Once S has been constructed computing the optimal intercept point, which is the solution to (39),

is very straightforward. We refer to this process as Mpursuer1evader [25]. The Mpursuer1evader
algorithm is based entirely off of Theorem 2, and therefore proceeds by computing all the candidate
solutions and comparing the distance from the nearest pursuer to each candidate. From Theorem 2
the optimal intercept point is

(x∗, y∗) = argmax
(x,y)∈P1

S∪VS∪VPS

min
i∈{1,...,M}

∥(x, y)− Pi∥αP , (42)

where P1
S is the set of single pursuer optimal intercept points in S, VS are the vertices of the evader’s

region of dominance (given by EvaderCell), and VPS is the set of vertices of the pursuer-only
Voronoi diagram inside S. Due to the seventh item in the previous paragraph, the first thing to do is
check whether any of the one-on-one optimal intercept points are on ∂S. Because the pursuers share
the same speed, it is either the case that the solution to the one-on-one game between the pursuer
closest to the evader and the evader is on ∂S or none of the one-on-one solutions are on ∂S. Thus
this step is trivial. If it is not the case that the optimal intercept point of a one-on-one game is on
∂S, then one must turn to the other candidates. As mentioned previously, the points VS are given by
EvaderCell. The last subset of candidate solutions to compute, then, is VPS for which we first need
to compute the Voronoi vertices of VP . Because we assume that EvaderCell is used prior to this
point we can essentially forget about any of the pursuers not in the set IS . To compute the Voronoi
vertices between the pursuers we employ Fortune’s Algorithm [13] over the pursuers in IS . Then, to
get VPS we simply check to see if each Voronoi vertex is inside or outside of S. Finally, the distance
from each candidate in VS ∪ VPS to its nearest pursuer is computed (RHS of (42)), and the optimal
intercept point is the candidate which maximizes this distance. The terminal time is simply the travel
time of the pursuer nearest that point via a straight-line path.

5 Results

The goal of this investigation is to consider full cooperation among the pursuers. Alternatively, the
pursuers could, for example, act entirely independently of one another. In the latter case, each pursuer
may implement its best strategy in the sense of one-on-one, that is Pure Pursuit (PP). We refer to
the approach detailed here and in [25] as the geometric (G) policy. Note that we did not claim that
G policy, if implemented by the pursuers and the evader, is a saddle-point pair of strategies in the
sense of a feedback Nash equilibrium. Therefore, some numerical simulations are included here in
order to demonstrate some of the merits of the G policy in comparison to other strategies, namely
PP. The comparison of these two policies is done using a discrete time numerical simulation in which
agents evaluate their respective control policies at each time step. For those agents implementing the
G policy, the optimal intercept point (x∗, y∗) is computed using the current positions of the agents,
and then those agents’ heading would aim towards this point. Also, if the evader, implementing G,
reaches the intercept point before any pursuer, then it will stand still (provided that point remains
the solution to (42)).

Figure 7 displays the trajectories produced by each policy pair. In these simulations, the time step
∆t is 0.001, the pursuers speed is 1, and the evader speed is 0.8 (and α = 0.8 as well). From t = 0 the
solution to (42) is the Voronoi vertex created by P1, P2, and P3. Thus, all three pursuers are required
to achieve the capture time of 0.57 seen in Figure 7a. Consequently, if the pursuers act independently
and implement PP, the evader, implementing G, can increase the capture time to 0.86, an increase of
over 50%. Observe that in Figures 7a and 7b P2’s trajectory is quite similar. In the latter, however,
P2 is not able to catch all the way up to E because P1 and P3 do not block the evader from passing
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(a) Pursuers implement G, tf = 0.57
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(b) Pursuers implement PP, t = 0.86

Fig. 7 Simulation results; evader implements G and pursuers implement G (a) or PP (b).

between them. The drastic difference between P1 and P3’s headings with respect to E and with respect
to the Voronoi vertex at t = 0 is what allows the evader to capitalize on their behavior. These results
are included merely to highlight the benefits of cooperation and to demonstrate how the G policy
achieves it.

The next set of examples demonstrate the non-uniqueness of the evader’s trajectory in cases when
the solution to (19) is a Voronoi vertex, v∗. In this case, all the evader must do is take a safe path
to v∗ (according to Property 1) in order to guarantee capture at time t∗. Meanwhile, the pursuers
will implement the G policy – that is, at every time step, they will call Mpursuer1evader to
compute their headings. As a consequence of the evader taking a safe path, the point (x∗, y∗) will
remain invariant and the pursuers’ trajectories will be straight. Figure 8 shows the trajectories for two
different simulations. In Figures 8a and 8b, the evader’s policy is a random walk with some additional
logic to ensure v∗ remains inside the instantaneous safe region S. In Figures 8c and 8d, the evader’s
policy is such that the evader spirals in towards v∗; once the evader can reach v∗ within a single time
step, it simply heads there at maximum speed. It is difficult, in general, to guarantee the safety of
a path, a priori, and hence the evader policy prescribed by Theorem 1 wherein the evader takes a
straight-line path at maximum speed to v∗ and then stands still is useful.

The selection of the timestep ∆t certainly has an effect on the playout of the game, and is an
important consideration not only for simulation but also for real-world control implementations. For
sufficiently large timesteps, capture may not even be possible! However, for the scenarios included in
this section we note that the results do not change appreciably for ∆t = 0.01 versus ∆t = 0.001. For
even smaller timesteps (∆t = 1e−4), the difference is even smaller. Therefore, as ∆t → 0, the capture
time asymptotically approaches the value it would have in continuous time. We claim that the results
we present for ∆t = 0.001 are sufficiently close to this asymptotic value.

6 Conclusion

In this paper, we considered the problem of multiple agents pursuing a single evader wherein all the
agents have simple motion. This problem is a direct extension of the two-pursuer one-evader problem
originally posed by Isaacs [19] and verified formally in [16]. The intent is to exploit the benefits of
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(c) Spiral evader path until v∗ reachable in one
timestep

0.15 0.10 0.05 0.00 0.05 0.10 0.15

0.10

0.05

0.00

0.05

0.10

0.15

P1

P2 P3

E

(d) Zoomed (c)

Fig. 8 Examples of ‘optimal’ evader trajectories resulting in capture at the Voronoi vertex demonstrating non-
uniqueness of the path. Evader begins at (0.1, 0.1), VP = 1, α = 2/3, and t∗ = 1 s.

cooperation among a team of three or more pursuers. Intuitively, the presence of additional pursuers
was shown to reduce the capture time of the evader.

The initial problem formulation and analysis highlights the difficulty in analyzing this problem
using the techniques of Isaacs. Part of the issue is the curse of dimensionality brought about by
including additional pursuers. A general strategy in differential games is to reduce the state-space
into at most three dimensions, which cannot be done here. In lieu of a full verified feedback-optimal
differential game solution we pursued a route of analysis which yielded open-loop optimal strategies
for the pursuers and evader. These strategies are open-loop in the sense that they depend only on
the initial conditions and are not necessarily robust to all other choice of opponent strategy when
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implemented as a state-feedback policy. Isaacs’ methods pertain to analysis of regular solutions; special
care must be given to singularities wherein Isaacs’ methods may not yield an optimal control action
for one or more agents. It is likely, with the increased number of agents, that there are more singular
surfaces in the M-pursuer one-evader differential game, requiring a more careful analysis.

Subsequent analysis relies on the pursuers taking straight-line paths to the capture point, which is
suggested by the derived necessary conditions for optimality as well as the solutions to both the one-
pursuer and two-pursuer versions of the game. Then, a linear program was posed to determine which
capture location is optimal. However, a strong geometric interpretation of the problem was observed
which resulted from the fact that pursuers take straight-line paths. Thus, a geometric solution was
prescribed based on two Voronoi diagrams which allows searching over a discrete set of candidate
solutions, as opposed to a continuous space as in the linear program case. Finally, algorithms were
presented to compute the solution efficiently while also providing the precise shape of the evader’s
region of dominance.

As presented, the pursuer and evader strategies are very useful, however a full solution to the
M-pursuer one-evader differential game is still sought. The results of this paper will help in addressing
the M-pursuer N-evader scenario which may be broken down into M-pursuer one-evader subgames
whose outcomes determine some sort of optimal pursuer assignments and teaming combinations.
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